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Introduction 
-

~_ 
N

Over the past decade there has been considerable interest in the physics

and chemistry of materials which exhibit highly anisotropic properties .~~ The

~~~ crystals themselves are of course three dimensional , but in some cases the

atomic or molecular arrangement is sucK that the electrons are constrained to

move preferentially in only one or two direct ions and it is In this sense that

the systems may be described as having reduced dimensionality. As we shall see

0.—j
in the following pages this reduced dimensionality has some unusual consequences

C-)
which are responsib le for the present exc itement in this field.

. LLi
One dimensional metals are , for example , intrinsically unstable against

the formation at low temperatures of a variety of distortorted states . They

may become magnetic or non-magnetic insulators or possibly even superconductors.

The instabilities arise from the response of the system to weak perturbations .

As the temperature is lowered we will find that the response “blows up.” On

the other hand we shall see that truly one-dimensional system cannot undergo

phase transitions at any temperature above absolute zero. It is this apparent

contradiction : that the system is unstable against a distortion but cannot
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distort , that makes these studies fascinating. The resolution of the problem

finally l ies in the actual 3-dimensional nature of the crystals.

In addition , one-dimensional systems are interesting because some

calculations which can be done only approximately in three dimensions can

be done exactly in one dimension. Probably most important, there is a general

feeling that it is potentially easier to use the apparatus of organic chemistry

to synthesize properties that we want in one-dimensional compounds than

in three-dimensional compounds .
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Instabilities

When we talk about a system being unstable we mean that a small per-

turbation will evoke a large response. If we consider a system which contains

many electrons in equilibrium and we then slightly change the potential they

experience, the result will be a change in the elec tron wavefunctions and

hence a change in the electron density. We will characterize the density
2

change by a response function X
q 

which gives the proportionality between the

amplitude of a periodic potential V(r) and the amplitude of the density change

~p(r) = X q V(r ) i

X
q is called a linear response function and it depends on how rapidly

the potential is varying in spac e through the wavevector q ( ~ihich is just

A being is the wavelength or period) .  In figure I we have illustrated the

effect of an attractive interaction of the form V (r) = V0 cos q r .  In the

absence of this potential the initial electron density is uniform. The potential

is app lied and the electrons move to regions where the attraction is large

and away from regions where it is small or repulsive. The difference

between the initial and final electron density is the response to the potential

and has the same spatial dependence as the applied potential .

To place these abstract ideas on more realistic grounds we note that the

~nergy of an electron with spin up in a magnetic f ield H is ~i0
H while that

of an electron with spin down is + ij0H, where is the magnetic moment of

the electron. The total magnetic moment of a collection of electrons is

the number with up spins times 
~~ 

plus the number of down spins times - ii .~ or

M = i.i~,(p+- p4’) II

Without a magnetic field the number up and down are equal so that M = 0.

If we put on a magnetic field that varies with position we have
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= - Xq (~%H) and 6P+ = X
q O•10H)

M = lA o ~~~~ - = 2T•A0
2X
q
H I I I

The ratio of M to H is the magnetic susceptibility and we find it equal to

21i0
2X
q• If X q diverges (goes to infinity) for some value of q then we have

some problem in understanding equation III. It does not mean that a small

magnetic field will give us an infinite total magnetic moment. Rather, it

implies that with no magnetic field we have a finite total moment. For

instance if Xq 
-
~ for q -

~~ o (which corresponds to very long wavelength or a

uniform magnetic field) , then we have a uniform magnetic moment with no

applied field and this is the familiar case of a ferromagnet. If X
q 

-~

for some other q then the magnetic moment varies with position and we have

an antiferroniagnet.

If we look instead at an electric field the energy of an electron is just

its charge e times the potential •. The total charge distribution Q in a metal

is e times the electron density p plus the positive charge of the ions in

the background . With no electric field Q = 0.

Putting on a spatially varying electric field we have

2 IV
ÔQ =e d p = e X

q e c P = e  X
q~~

If for some value of q, Xq4~~ the sys tem is unstable against the formation of

a periodic charge density. To make further connection with electromagnetic

theory we note that a charge density produces itself produces a potential

according to Maxwell’s Equations so that

V2(~l)= -4~e~p 
V

and using this expression we can relate the dielectric constant ~(q) to our

response function 

-. - .- ~~~~~~~~~~~~~~~~~~~~~~~ 
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c (q) = 1 + 4ire2 
X q vi

Naturally, the reason is we are going through all of this is that Xq
does diverge for the one-dimensional systems we are interested in. The actual

form of X
q for electrons in a metal is known as the Lindhard function and is

given by:3

f (k )  - f(k • q)
q k k + q - k  V II

Here we are summing over the different values of wavevectors k (or momentum

)tk) for the electron . f(k) is the Fermi-Dirac distribution function (and

contains the interesting temperature dependence) and 
~k 

is the energy of the

electron with momentum $k.

The Lindhard function is sketched as a function of q for one and three

dimensional cases in figure 2. For one dimension there is a peak at a value

of q equal to twice the Fermi wavevector. This peak increases as temperature

is lowered, diverging logarithmically as T -~~ 0. For three dimensions there

is no such peak. Understanding the origin of this peak is then essential to

our study .

In order to proceed we have to remember a few simple results of quantum

mechanics and what we have learned about electrons in metals from Prof. Can to ’s

talk earlier in this conference. In the simplest case we can view the electrons

in a metal as being “free” so that their only energy is kinetic. The wave-

functions are then
4. 4.

i k r  V I I I

and the energies are

£ ~~~~~~~~~~~~~k 2m 2m
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We now apply a periodic potential of the form V(r) = V0 cos qr. This

+
perturbation will couple electrons whose wavevectors differ by q. The wave-

functions for the electrons will then be a combination of the orig inal

plane waves 
~k 

plus a little bit of the plane wave which is mixed in by the

perturbation ‘~

+ 
+

k~~~~k

This is very similar to what happens when musical notes are mixed. We

obtain additional tones at the sum and difference of the original tones. In

our case only one of the additional frequencies is important. The amount of

the mixing depends on how strongly the two wavefunctions are coupled divided by

the original energy difference between the wavefunctions. This is known as

perturbation theory in physics and as “configuration interaction” in chemistry.

The density change which this brings about is just the density with the perturbation

minus the original density

= ~~~ ~~ - 
0 cos XI

k+q -~k

As expected we find that the density change is proportional to the applied

periodic potential. If we want to know how the energies of the electron change,

the general result is that the energies are pushed apart by the interaction

that couples them. The additional splitting is equal to the coup l ing squared

divided again by the energy difference.
V 2

:~~~~~ 

~~~~~~ =-óc XII
k+q £k+q

_ C
~ 

k

~ 

-~~~~~~--- —~~~—-. ~~~~~~~~~~~~~~~~~~~
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This is illustrated in figure 3a. Now if the states which are coupled

have the same energy the energy denominator goes to zero and the expressions

in X -XII diverge . This seems to give us the result we are looking for, but

unfortunately it is not correct. Equations X-XII are only valid if the

denominator is much larger than the numerator. In fact the largest the ratio

Vo/(C k+q - c~) can legitimately get is unity. This in fact is the result

of the degenerate perturbation theory we must use. When we couple states with

the same energy they are split by the coupling as illustrated in figure 3b.

This of course is the origin of the “bonding and antibonding orbital~ ’ which

occur throughout organic chemistry. 4

The electrons which have the same energy and are coupled by V(r) are

those with k = -q,’2 and k + q = q/2. The wavefunction for the lower energy

state is then + + + 4.

ij • r~~ -i~~r
e 2 e 2 

= ,“~ cos XIIr

= cos

Note that the density change has the same spatial dependence as V(r)  but

there is not any dependence on how big the oerturbation is (i.e., V0 does not

appear in XIII). Thus for an infinitesimal perturbation we get a finite response.

As advertised this is the true meaning of a divergent response function.

If the states q/2 and -q/2 were both f illed (with two electrons each) we would

have no effect as both bonding and antibonding orbits would be filled after

the perturbation is applied. Similarly if both are empty we have no effect.

The cases of interest are states which are partially but not completely f illed

with electrons. Let us see how the states are occupied in a metal.

_ _ _  
~~~~~~~~~~~~~~~~~~ . ~~~~~~- .
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In figure 4a we see the situation for a three dimensional metal at

low temperatures. The states with low kinetic energy are filled until we

have accounted for all of the electrons in the metal . The momentum of the

last electron added is called the Fermi momentum kF and its energy, the

Fermi energy EF. States with ki < k~ are f il led and those above are

empty.5 For a particular value of q there are just two states which are

connected by q which have the same energy and are partially filled (i.e.,

lie on the surface of constant Cf I called the Fermi surface)
.Slightly

different values of q will couple other states and give a density change with a

different periodicity. Adding random periodicities results in no net

contribution to the charge density.

By contrast we look at the situation for a one-dimensional metal

(figure 4b). In one dimension the energy is determined solely by the momentum

in one direction, call it = All k states are occupied up to

k
~ 

= kf. For any particular value of q~ the states connected do not

lie on the Fermi surface. However for q = 2kF there are many states which

are connected by q and lie on the Fermi surface which in this case is just

two parallel planes at k
~ 

= - kF and kx = kF. The difference between one

and three dimensions merely lies in the shape of the Fermi surface.

From these illustrations it is clear that the divergence we are looking

for comes from having a plane of degeneracy , i.e., a vector which will

bring part of the Fermi surface into coincidence with another part. If one

part of the Fermi surface fits into another part in this way we say the

Fermi. surface “nests .” We wi l l  always have Fermi surface “nesting” in one

dimension since the Fermi surface is a set of parallel planes. Sometimes we can have

a similar occurrence in two or three dimensions. As we have seen from

Prof. Can to’s lecture the free electron approximation is not always applicable.

~ 

~~~~~~~~~~~~~ . . . .~~~~~~~~~~~~~ .~~~~~~ .. .~~~~~~~~~~.



~~~~~~~~~

- 9 -

For example if we have a three-dimensional metal described by tight binding

bands the electron energies are given by:

= 2’r
~ 

cos k
~a÷2T~ cos k

1
b+ 2i-5 cos k

~ 
C XIV

where the i’s are overlap integrals in each direction and a ,b and c are the

unit cell parameters. The Fermi surfaces are shown in figure 5 for a

situation with one electron per unit cell. In this circumstance a wavevector

q = 
~~‘a’ ~‘b’ 1r/

~) will bring one part of the Fermi surface into coincidence

with another part and the response function will diverge for this value of

q.6 We will see how these considerations effect the properties of transition

metal sulfides in the following talk.

Kohn Anomaly

We would now like to investigate the kind of instabilities which result from

the divergence of the response function. Up to this point we have neglected

the ions which make -up the crystal in order to study the electrons. Suppose

that the ions have a periodic displacement from their equilibrium position

which has periodicity q ana ampl itude U
q~ 

This is illustrated in figure 6.

Xv
= U

q cos

Here U~ is the displacement of the ion at position r
~ 

from its

equilibrium position. Since the ions are charged, the displacement creates

a periodic electrostatic potential on the electrons which we write as:

V() = g Uq 
cos XVI

g is a constant which relates the ion displacement to the electron

potential and depends on the charge distribution on the ion.

The electrons will respond to this potential according to the Xq 
we

have just developed

_ _  _ _ _ _ _  ~~~~~~~~~~~~ —-~ . .
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= X
q 
V(r) = X

q 
g U

q 
C05 cr  XVII

The electron charge density builds up in the region of positive charge

created by the ions. The negative electrons in turn produce a force on the

ions which tends to displace them further. The force in the direction of the

original displacement is the same proportionality constant g as for the force

of the ions on the electrons.

F = g d p  XVIII

The magnitude of the force is then:

F = ~~XqUq XIV

The periodic displacement of the ions is opposed by the elastic forces

which hold the ions in place. The equation of motion for the displacements is

usually written as

d2U
~~~~~ = - K U  XX

dr2 q q

where M is the ion mass and is the restoring force. This is just a complicated

way of writing ma = F for a simple harmonic oscillator. If we assume that

the displacements will vary simusoidally with time, the frequency of oscillation

is given by

- M u0
2(q) U

q 
= - K

qUq 
XXI

w0(q) = IK
q1M

This equation gives the frequency as a function of wavevector for the

lattice vibrations of a solid.
7 

It is shown schematically as the solid line in

figure 7. The dependence on q comes from the fact that if the crystal as a

whole is displaced there is no restoring force (q = o) while if nearest neighbors

ions (q ~
I
~/a) are moved in opposite directions the restoring force is a 

maximum .

~ 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ,. -~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ --~~~~~~~~ 4
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We now add in the force due to the ‘~ectronic response.

- M w2 (q) Uq = - K(q) + g2Xq
U
q

w 2 (q) = - g2 
~~ XXII

2
= 

~~~~ ~~ - g

The lattice vibration frequencies are lowered by the interaction with

the electrons. For a one-dimensional metal we have seen that X
q 
for q = 2 kF

diverges as temperature is lowered. The frequency of this mode then decreases

and goes to zero for some temperature above T = 0. This is illustrated by

the dotted lines in figure 7.

The energy needed to create a periodic lattice displacement is ~~

If ~ f~q = 2kF) = 0 then a displacement at this period cost no energy and

lasts forever (its frequency is zero) which implies a lattice distortion

or crystal structure chdnge.

We have therefore shown that a one-dimensional metal is unstable at

some non-zero temperature against a crystal structure change with new

periodicity of q = 2 kF

Experimentally this “softening” of the lattice vibration frequency at 2

has been seen in several systems which you will hear about at this conference.

The effect was first predicted by Kohm and is known as a Kohn anomaly.8

Unfortunately our treatment so far does not tell us what happens after

the distortion occurs. To see that, we return to look at the electrons using

a description first presented by Peierls.9 
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Pejerl ‘s Transition

In figure 8 we have sketched the energy versus wavevector relationship

for electrons in a metal . In the presence of a periodic potential

V0 cos ~~~~~~~ the states k and k + q are mixed. As we have seen in figure

3 the energy levels repel one another and the shif ts are given by eq. X I I .

Of course the shift can never exceed the result that we found in the degenerate

limit. If we look at a level with momentum k as shown in figure 8 it

mixes with. k-q. The energy corresponding to k is lowered below its un-

perturbed value , while the energy of k-q is increased . As k increases toward

4 the energy is lowered even more as the energy difference between k and

k-q is getting smaller. The maximum energy lowering occurs when k =

and the shift is V .  Correspondingly k-q is shifted up by V0.

The energy vs. k after the potential has been added is shown in figure 9.

There is now a region in which no allowed energies are to be found i.e.,

an energy gap. Note that all states with k <q/2 have lower energy than

previously. If kF 
= q,2 then the states filled with electrons have lower

energy whereas the states which have higher energy are empty and thus do

not contribute anything. The amount of electronic energy which is gained is

represented by the shaded area in figure 9. This electronic energy lowering

may be directly calculated and is equal to

= - 4 N(EF) v0
2
c4 

+ in ( F)) XXIII

where C
F 

15 the Fermi energy and N(CF) is the density of 
states (number of

electrons which had energy £F) before the perturbation was applied.

If the periodic potential is caused by a lattice displacement

V = gU
0 q

_ _  ~~~~~ - . - .- .~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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The elastic energy lost in causing this displacement is

E = - ~- K U  XXV
L 2 q g

as work is done against the restoring force of the ions.

The total energy change in distorting the lattice and opening the energy

gap is:

E = E2 + Ee = 4 K
q
U
q
2 

- 4 N(C~ ) g2Uq
2
(4 + ifl(1~

q
)) XXVI

For small distortions the logarithmic term dominates as when Uq 
-
~ 0

2CF
in (—a— ~ 

+ 
~~ . The total system always has lower energy with a smal l distortion .

The total energy is at a minimum when

-K
gU = V

0 
= 2 CF exp 2 

q XXV II
q g N(c~)

So we have calculated the amplitude of the displacements and the size of

the energy gap .

We might expect this energy lowering and distortion from any metal. Why

is it a one-dimensional effect? The only electrons which are effected by the

distortion are those connected by the wavevector q and within an energy range

V0 of the Fermi energy . CThis last statement is clear when we look at the

energies in figure 9). For one dimension the electrons effected lie in the

shaded area in figure 10 a . This fraction of electrons is Vo/CF
. Each elect-

ron in this region has its energy lowered . Those which were at C
F 
are lowered

by V . those which were at CF - V0 are lowered only slightly. The average

energy lowering is then V0 12. 
For 1-dimension the total lowering is the

number of electrons effected times their average energy gain or:

2 xxviii
0

1-dim t~.E ‘~e 
~
CF

— . .~ -
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In two dimensions the fraction of electrons effected by the opening

o the gap is just the shaded slice in figure 10 b . The fraction of
V -

electrons effected is then approximately (~_2. ) and the average energy
F

gain is V0/2. For 2-dimensions the total lowering is then

2-dim
e . ,  2 XXIXCF

If we performed the calculation more correctly we would have a logarithmic

factor as in eq. XXVI. The elastic energy is the same for one or two

dimensions. The total energy change upon undergoing a distortion is then
E

l-dini = AVQ
2 

- By 2 in (~~
1 )

-, 3 Ef2-dim = AV - By in (v— ~ XXX
0

For small values of V the second term in the 2-dimensional case is
E

smaller than the first since V0 Zn (~~~
. ) goes to zero as V0 goes to zero.a

We must remember however that if the Fermi surface “nests” in two or

three dimensions then the situation looks very much like the one-dimensional

cases. In fact when Peierls did his original calculation of this effect it

was largely to expl ain why al l metals were not in close packed structure .

The point is that a distortion is always favorable in one-dimension and is

sometimes favorable in 2 or 3 dimensions.

It is also noteworthy that the development of a gap at the Fermi surface

of a one-dimensional metal will impede its conductivity (with some exceptions)

and we therefore expect a metal insulator transition.

A
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Phase Transitions

We have found that a metallic one-dimensional chain which. would hav e

a uniform charge density’ at high. temperatures (figur e h a  ) is unstable

against the formation of a distorted lattice and associated charge density

wave at low temperature (figure llb ).  This process may be regarded in

simple chemical terms. When the Ions distort from a uniform arrangement the

charge density accumulates in the region where the ions are closest together

essentially creating a chemical bond. The energy of the bond is the energy

gap which has been opened , V0.

Starting from low temperatures we would expect the bonds to be stable.

As temperature is increased more of the bonds are broken or more electrons

are excited across the energy gap. This lowers the energy of the distorted

state relative to the uniform state. We would then expect the distortion

to decrease until, at a temperature where the thermal energy is about equal

to V,~ we would return to the undistorted state. If the excitations or

broken bonds are treated on the average (in “Mean Field Theory”) we find the
10

mean tield transition temperature is relat ive to V0 by
V

kT - _.a.__ XXXI
‘IF 1.76

At this temperature we expect a distcrtion and gap to form and increase

to a maximum value as temperature i’ lowered toward T = 0. This temperature

dependence is sketched as the outer line in figure 12. We would assume

that for T < T%F the system is completely ordered and the distortion just

increases in amplitude . This is not the case.

Let us see what happens if we skip a lattice Site when the distortion

occurs. In figure llb we saw the fully ordered phase. In figure lic we

see the order broken by a missed bond . What has happened in this picture is
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that the ions have paired together up to site i. At this site the next atom

moved in the opposite direction rather than toward i. After this mistake the

ions are again paired. We have two fully ordered regions which meet at

point i. But the two regions are not ordered with respect to one another.

The energy difference between the phase with complete order and broken order

is simply the energy lost by the two electrons in the missing bond 2V0. The

break can be at any of N places along the chain to give us broken order, where

N is the number of sites along the cha in . Since there are N ways the break

can occur the associated entropy in k8in N. Now for finite temperatures we

should really be us ing the Hehmholtz free energy which is internal energy

minus the temperature times the entropy . The free energy difference between

the ordered and broken phases is:~”

= 2V - k&T in N XXXII

For a large system (N-’~~) the broken state is always favorable for any

temperature above absolute zero. This uerehy reflects the large number of

possible sites for a break.

The result we have found indicates that for temperatures above zero we

will have ordered regions separated by breaks . As temperature is raised

from zero there will be more breaks and the average size of the ordered

regions will decrease. If a chain has a small number of sites N it may still

remain ordered according to eq. XXXII up a certain temperature . The average

number of sites that will remain ordered at a temperature I is then obtained

by setting t~.F = 0 12

N exp (
~4)

Since the average distance between sites is the interatomic spacing a ,

the length of this chain segment will be 
~~av) 

a. The average size of the

ordered regions is known as the correlation length and is written:
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2V
0

~ (T) = a exp (—f ) XXXIV

We again must ask why the situation is different for one dimension than

for two or three. In figure 13 a we have drawn several chains and assumed

that they interact with. a two-dimensional electrostatic coupling. The

charge density on each chain has large negative charge on a bond and less

negative charge between bonds. Each bond would therefore like to see an

anti-bond at the appropriate position on each chain surrounding it. This

will occur if nearest neighbor chains have their charge density waves slipped

by one bond as in the illustration. We can represent the interchain

interactions by a (negative) term B which is added if a bond is adjacent to

antibond and subtracted if two bonds or two antibonds are adjacent.

In figure 13 b we have shown the situation with a broken bond in one

of the chains . In this case we not only lose the bond energy 2V0 as in one

dimension, but we have a repulsive interaction between the chains out to

the end of the crystal (which is about Sites away if the break is toward

the center of the crystal). Thus we lose an addition ~~
. in energy. The

difference in free energy between the ordered and broken states in figure 13

is then

F = 2V0 
÷2BN - k

8T 2.n (N )  XXXV

For a large system (N + oo) the second term dominates and the ordered phas e

is stable below some temperature but above absolute zero. Thus in two

dimensions (or more) it is possible to have real phase transitions to ordered

states.

In any real systems there is always some three dimensional coupling between

the chains and this accounts for the phase transitions that are observed in

I’— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- —- - --- ~--- --- - -.~~~~~~~~~~
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the “one-dimensional systems” which will be discussed in the following talks .

We can fin d the transition temperature by seeing what temperature will stabilize

the ordered state in eq. XXXV given a certain sIze for the system (number

of bonds in an ordered chain). This will occur on average when ~F 0. The

number of bonds in an ordered chain is given on average by eq. XXXIII and is

itself temperature dependent.

We find:

- kBTc in(N(T ))

or 
2V0kTB c

This expression uses the model depicted in figure 14 where each chain has

two nearest neighbors. If there are z nearest neighbor chains B should be

replaced by 4 . What is physically happening is that the correlation length

on each chain is increasing as temperature is lowered until the average

number of bonds in each ordered region times the interaction energy per bond
13

with neighboring chains is larger than the thermal energy . For temperatures

below this the chains are locked together too s trongly to be broken by thermal

fluctuations .

It is interesting to note that the three dimensional ordering temperature

is usually below the one-dimensional mean f ield transition TMF (by a
2V

factor of about in ( ° ) ) .  We expect the transitions to have the general

behavior shown in figure 12. As temperature is lowered through T~~ we fo rm

some bonds, the crystal distorts and charge density waves appear in isolated

regions. The amplitude of the displacements and charge density waves increase

as we get cooler , but the prevalent effect is the growth of the size of the
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ordered regions or correlation length. . Final ly  the chains order three

dimensionally at Tc at which temperature the gap, charge density and distortions

are essentially fully developed .

Conclusion

We have seen that one-dimensional metals are quite generally unstable

against the formation of an insulating distorted state at low temperatures and

that the problem associated with one-dimensional phase transitions is overcome

by the three-dimensional nature of most physically real i zable crystals.

How these ideas apply to the crystals under discussions at this conference

depends strongly on the values of the different parameters and may vary widely.

If coupling between chains is large the region between T~~ and Tc may be too

small to be physically significant. If the electron-lattice coupling is

smal l then T
Mr 

may be reduced to a low enough temperature that other

interactions predominate. Nonetheless , there is ample experimental evidence
14 15

that these effects have been seen in several compounds and we will doubtless

find even more fascinating properties as new compounds continue to be synthesized .

There are in addition many other related instabilities which are possible in
16

one-dimensional metals including a Mott-Hubbard or magnetic insulator trans it ion
17

and superconductivity.

I would like to acknowledge several informative conversations with

Prof essors P .. Pincus, T. Holstein and R. Orbach and Dr. R. L. Greene . 
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Figure Captions

I. Density response of a uniformly dense electron gas in the presence of

a periodic potential of wavevector q and amplitude V0.

Il. The response function or Lindhard function for a one-dimensional and

three-dimensional electron gas. The solid lines are for zero temperature

while the dashed lines represent non-zero temperature.

III. The results of quantum mechanical perturbation theory. a) In second

order perturbation theory energy levels which are coupled by the perturbation

repel . b) If stateswith the same energy are coupled, they are split by the

coupling energy.

IV. The Fermi surfaces of a free electron gas. a) For three dimensions all

states with Ik i  < kF are occupied . For a given perturbation of wave-

vector q only two equal energy states on the Fermi surface are coupled.

b) For one dimension all states with Jk
~ J < k

F are occupied. A perturbation

of wayevector q = 2kF couples a set of planes of degenerate states on

the Fermi surface.

V. For a three-dimensional Fermi surface regions may “nest.” For tight binding

bands with one electron per unit cell the wavevector q = ( 7a1, 7b1, wfc)

always brings one part of the Fermi surface into juxtaposition with another

part .

VI. If the ions in a crystal are periodically displaced the electrons respond

by setting up a charge density wave.

VII.  The solid line represents the natural frequencies of the lattice vibrations

of a crystal. The dashed lines represent the lowering of the frequency of

the lattice vibration at q = 2kF 
caused by the response of the electrons ,

known as the Kohn anomaly. As temperature is lowered the frequency is

lowered. 

.-
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VIII. The solid line is the energy vs. wavevector (or momentum) of electrons in

a metal. The arrows indicate the energy shifts when a periodic potential

of wavevector q is applied.

LX. The solid lines are the energy vs. w-avevector of electrons in a metal

af ter a potential of the form V
0 cos ~ has been applied . Note the energy

gap at k = q/~~. The shaded area is the lowering of the energy experienced

by the electrons with ki < qj 2 .

X. The electrons effected by the periodic potential V0 cos are represented

by the shaded area in a) and b). The fraction of electrons effected is

larger in one dimension a) than in two dimensions b).

XI. In a)We illUstrate the undistorted , lattice with a uniform charge density.

In b) a lattice distortion and charge density wave are illustrated in a

fully ordered phase,corresponding to the lowest energy configuration . In

c) tJie order has been broken by skipping a bond at site i. The next ion

has moved away from i and formed a separate bond rather than bonding with

the ion at i.

XII. The amplitude of the distortion or energy gap is sho~cn as a function of

temperature. The outer curve is the result of “mean field theory.” However

the actual phase trans ition to an ordered phase occurs at Tc 3-dim . where

the interaction energy between chains is larger than the thermal energy.

XIII. When interactions between chains are important the charge density waves

arrange themselves so that positive and negative regions are adjacent in

nearest neighbor chains, a) We represent this Coulomb interaction energy by

-B when a bond is adjacent to an antibond and +8 when bond is adjacent to

bond or antibond to antibond . b) If one chain has a broken order ,

with a bond missing, then the rest of the chain (to the right of the break)

experiences repulsive interactions for the remainder of its length.
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